Presence of the Growling Grass Frog Litoria raniformis

100 Vineyard Road Sunbury 2008

Report Prepared For Keith Altmann & Associates

Acknowledgements to the Authors and Contributors

- Jacqui Richards <u>staff@gagin.com.au</u>
- Peter Wlodarczyk peter@gagin.com.au

Gagin Pty Ltd 50 School Rd Balliang East Vic. 3340

January 2009

REPORT PREPARED FOR

Keith Altmann Keith Altmann & Associates 65 O'Shanassy St. PO Box 351 Sunbury Vic. 3429

TABLE OF CONTENTS

BACKGROUND1												
1.1	Objectives	2										
1.2	Limitations	2										
1.3	Significance of Litoria raniformis	3										
MET	HODOLOGY	4										
2.1	Study Site	4										
2.2	Previous Reports and Related Information	4										
2.3	Survey Techniques	5										
2.4	GPS and Mapping Capabilities	5										
RESU	JLTS	6										
IMPI	LICATIONS FOR DEVELOPMENT	10										
REFI	ERENCES	11										
	1.1 1.2 1.3 MET 2.1 2.2 2.3 2.4 RESU	1.1 Objectives										

Appendices

Appendix 1 Daily Weather Observations for November and December 2008

1.0 <u>BACKGROUND</u>

Native Vegetation Management Services (NVMS), a division of Greybox and Grasslands

Indigenous Nursery (GAGIN P/L), was commissioned by Keith Altmann in January 2005 to provide a

botanical and habitat value assessment of the property 100 Vineyard Rd, Sunbury located within the City
of Hume. This site is proposed for development and the intention of the preliminary report was to assess
the site for habitat values and to locate, qualify and quantify these values according to Victoria's Native
Vegetation Management Framework (DNRE, 2002). This assessment found that the property contained
large areas dominated by *Austrodanthonia sp.* (Wallaby Grass). In addition to meeting requirements
outlined by the Native Vegetation Management Framework, it was noted that the property contained 2
dams, several creeks and areas of low lying wet land surrounding the creek beds. These areas are
considered potential habitat for amphibians and within a 10 km radius of the property there are nine (9)
recorded species (Atlas of Victorian Wildlife, 2005) including the federally and state listed Growling
Grass Frog *Litoria raniformis* (DSE, 2007). Due to the high potential of this property being considered
suitable habitat for *L. raniformis*, a presence/absence survey was conducted in November and December,
2008.

This report outlines the assessment that was undertaken to determine the presence or absence of *L. raniformis* within 100 Vineyard Rd, Sunbury.

January 2009

GAGIN Pty Ltd- 50 School Rd. Balliang East
greybox_grasslands@bigpond.com

1.1 Objectives

The objectives of this report are as follows;

- Conduct an auditory and observational survey of the amphibian species present within 100 Vineyard Rd.
- 2. Determine the presence or absence of *L. raniformis* within the property, 100 Vineyard Rd.
- 3. Identify the areas of 100 Vineyard Road which are currently habitat for amphibian species.

1.2 Limitations

The survey was conducted with the intention of confirming the presence or absence of *L. raniformis*, as well as identifying all amphibian species which utilise the area and determine the key areas of amphibian habitat located within 100 Vineyard Road. The survey was to continue throughout the period of time *L. raniformis* is active, until it has been found or sufficient survey time had passed for which it could be considered absent. Limitations included highly variable and fluctuating climatic conditions which made it difficult to conduct the survey over four consecutive weeks. Financial and time restrictions did not allow for an intensive survey to be conducted whereby the site would have been visited during the morning, day and evening on more than one occasion.

1.3 Significance of *Litoria raniformis*

Federal Significance

L. raniformis is listed as **vulnerable** under the Environment Protection and Biodiversity Conservation (EPBC) Act, 1999.

State Significance

L. raniformis is listed as threatened in Victoria under the Flora and Fauna Guarantee (FFG) Act, 1988.

The species has also been listed as **endangered** in New South Wales under the *Threatened Species Conservation Act, 1999* and as **vulnerable** in Tasmania under the *Threatened Species Protection Act, 1992*.

Presence of the Growling Grass Frog *Litoria raniformis* 100 Vineyard Road, Sunbury

2.0 <u>METHODOLOGY</u>

2.1 Study Site

The study site is located at 100 Vineyard Rd. Sunbury. Details of this property location and description of the vegetation and habitat zones are contained within the preliminary botanical and habitat significance report (Wlodarczyk & Williams, 2005) and addendums to this report are listed in the following section.

2.2 Previous Reports and Related Information

The previous reports regarding 100 Vineyard Rd are as follows;

Wlodarczyk, P. & Hatt, T. (April 2008) Flora and of Habitat Hectare Assessment for the area of the Retarding Basin - 100 Vineyard Road. A report to Keith Altmann & Associates. Gagin Pty Ltd.

Wlodarczyk, P. & Williams, L. (January 2005) A botanical assessment and habitat significance of 100

Vineyard road, city of Hume. A report to Keith Altmann & Associates. Gagin Pty Ltd.

Wlodarczyk, P. & Williams, L. (June 2005) A short report into the habitat hectare value and net gain analysis of habitat zone PG4. Addendum to – Botanical assessment and habitat significance of 100 Vineyard Road, Sunbury. For Keith Altmann & Associates. Gagin Pty Ltd.

Wlodarczyk, P. & Williams, L. (June 2005) A botanical assessment and habitat significance of 100 vineyard road, city of Hume. Addendum 2. A report to Keith Altmann & Associates. Gagin Pty Ltd.

Ja nuary 2009

GAGIN Pty Ltd- 50 School Rd. Balliang East
greybox_grasslands@bigpond.com

Presence of the Growling Grass Frog *Litoria raniformis* 100 Vineyard Road, Sunbury

2.3 Survey Techniques

An auditory and observational survey was conducted over four (4) days within a five (5)

week period from the 14th November to the 15th December, 2008. The survey was conducted within

several days of the previous rainfall event between 900hrs - 1000hrs or at dusk between 1700hrs-

1900hrs. The survey was conducted by highly qualified personnel who possess comprehensive

information regarding the physical characteristics, behaviour, habitat and vocalisations of L.

raniformis. During these hours recordings were taken at several locations along the creeks to allow

for positive identification of all frog species present. Prior to commencing the survey a site which

contained a known population of L. raniformis was visited. The known population is located in

Bridgewater Way, Hoppers Crossing along Skeleton Creek. Only when L. raniformis was detected

at Bridgewater Way would the survey at 100 Vineyard road proceed.

2.4 GPS and Mapping Capabilities

The location of each section of habitat where amphibian species were found to be present

was recorded using a Magellan eXplorist 600 handheld GPS receiver. The Magellan eXplorist 600

has an accuracy of <7m and uses multiple satellites which provide a 3D position fix. Thus recording

the altitude, longitude and latitude of each position.

Maps were created using the mapping program TumAus. TumAus is a vector based map of

the state of Victoria, Australia which provides a 1:25, 000 topographical vectorised data set

(Sourced from VicMap, Department of Natural Resources and Environment). TumAus allows for

the addition of information including uploading data from the handheld GPS receiver and the

5

production of locally specific maps.

______Ja nuary 2009

GAGIN Pty Ltd-50 School Rd. Balliang East

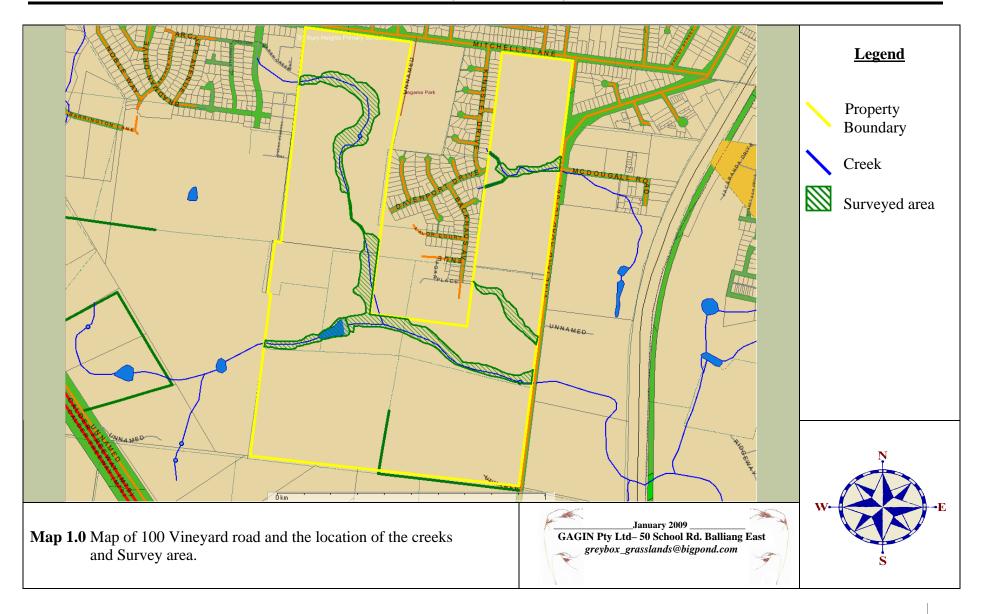
greybox_grasslands@bigpond.com

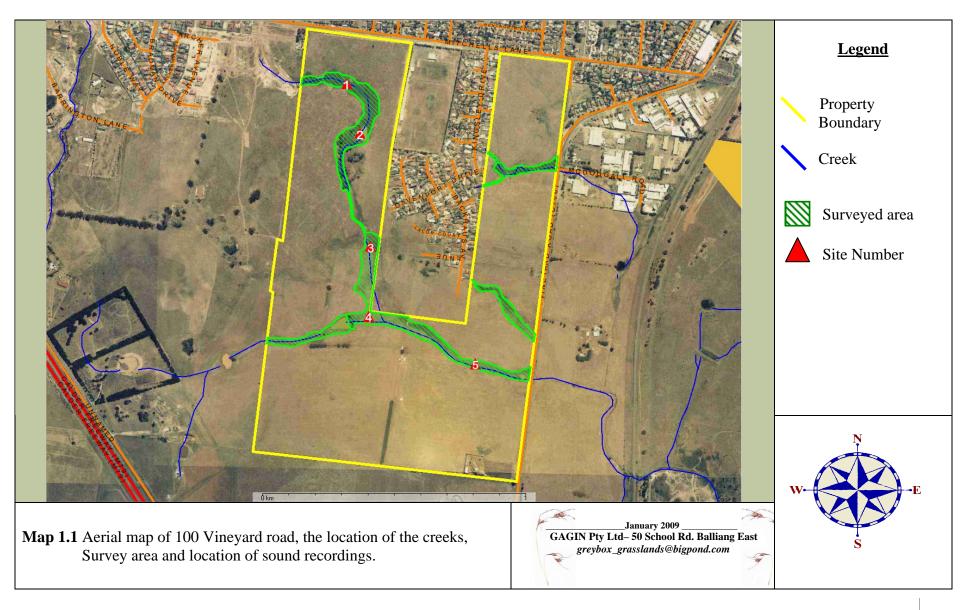
3.0 RESULTS

100 Vineyard Rd was surveyed for the presence of amphibian species and showed that approximately 10.5 hectares of the property is currently habitat for a wide variety of frog species (Map 1.0). Of the nine (9) species recorded within a 10km radius of the Vineyard Road property (Atlas of Victorian Wildlife, 2005) five (5) frog species were identified and determined present. They included the Eastern Common Froglet *Crinia signifera*, Eastern Banjo Frog or Pobblebonk *Limnodynastes dumerili*, Spotted Marsh Frog *Limnodynastes tasmaniensis*, Lesueur's Tree Frog, *Litoria lesueuri* and Verreaux's Tree Frog, *Litoria verreauxi* (Table 1.0 & Map 1.1).

Table 1.0 Frog species recorded within a 10kim radius, the frog species that were present during the survey and the site within the property that they were found at (Map 1.1).

Species recorded w	Present during	Site Number	
Common Name	Scientific Name	Survey	(Map 1.1)
Bibrons Toadlet	Pseudophryne bibronii	Absent	-
Common Froglet	Crinia signifera	Present	1-5
Common Spadefoot Toad	Neobatrachus sudelli	Absent	-
Growling Grass Frog	Litoria raniformis	Absent	-
Lesueur's Frog	Litoria lesueuri	Present	4
Eastern Banjo Frog	Limnodynastes dumerili	Present	2
Spotted Marsh Frog	Limnodynastes tasmaniensis	Present	2
Verreaux's Tree Frog	Litoria verreauxi	Present	1-5
Whistling Tree Frog	Litoria verreauxi verreauxi	Absent	-


During the four (4) days of surveying 100 Vineyard Road, Sunbury there were no sightings or vocalisations of *L. raniformis* in either the adult form or as a tadpole. During this period a known population of *L. raniformis* was visited prior to surveying the site. On each occasion that the known population was visited *L. raniformis* was detected, subsequently the Vineyard road property was surveyed and on each and every occasion *L. raniformis* was found to be absent despite the presence of five (5) other frog species.


Presence of the Growling Grass Frog *Litoria raniformis* 100 Vineyard Road, Sunbury

The property was surveyed in temperatures greater than 10°C and less than 25°C within several days of the previous rainfall event (**Table 1.1**).

Table 1.1 Daily temperatures and rainfall for each of the days that the survey was conducted (Bureau of Meteorology).

	Temp	erature	Dain in provious	Doin
Date	(°C) (°C) 1/08 13.4 21.5 1/08 10.8 17.3 /08 7.4 25.6	Rain in previous 24Hrs (mm)	Rain (mm)	
14/11/08	13.4	21.5	0.0	12.2
24/11/08	10.8	17.3	14.0	0.0
4/12/08	7.4	25.6	0.0	0.0
15/12/08	11.2	20.4	39.0	0.4

4.0 IMPLICATIONS FOR DEVELOPMENT

Despite being unable to detect the presence of L. raniformis during the survey period there

is still a high potential for this species to be present within 100 Vineyard Rd.

Due to the possibility that L. raniformis may occur within the property and the known

presence of five (5) other species of frogs it is recommended that in the event of the development

proceeding that conditions be placed upon the activities surrounding the construction process.

Conditions should include;

- Protecting the creek, both dams and all wetland areas from any damage which may be

caused as a result of the construction process.

- Fencing off the creek, both dams and all wetland areas to restrict the access of both

humans and livestock.

Induct all construction workers on the sensitivity and ecological importance of the

wetland areas and the need to minimise the disturbance of these areas during the

construction process.

- Minimise the turbidity entering the waterways.

- Manage the riparian vegetation as it as a direct effect on the quality of the water and

the fauna which rely on it.

- Manage the rubbish entering the creek especially the plastics and pollutants which are

often a by-product of construction.

10

January 2009 _____ GAGIN Pty Ltd- 50 School Rd. Balliang East

greybox_grasslands@bigpond.com

5.0 REFERENCES

Australian Plants Society, Maroondah (2001) Flora of Melbourne, Hyland House, Melbourne.

- (BOM) Bureau of Meteorology (2009) *Melourne Airport Victoria-Daily Weather Observations*. (Website www.bom.gov.au/climate/dwo. [Accessed 10-12-2008].
- (DNRE) Department of Natural Resources and Environment (October 2002) Victorias Native

 Vegetation Management a Framework for Action, State of Victoria, Technical Support

 Maps for Local Government Authorities. The State of Victoria DNRE.
- (DEHWA) Department of the Environment, Water, Heritage and the Arts (2009). *Litoria raniformis* in Species Profile and Threats Database, Department of the Environment, Water, Heritage and the Arts, Canberra. Available from: http://www.environment.gov.au/sprat. [Accessed 10-12-2008].
- (DSE) Department of Sustainability and Environment (2005) Atlas of Victorian Wildlife,

 Biodiversity and Natural Resources- © Viridans Biological Databases
- Frogs Australia Network (2005a). Litoria raniformis. *Australian Frog Database*. [Online].

 Available from: http://www.frogsaustralia.net.au/frogs/display.cfm?frog_id=180. [Accessed 10-12-2008].

Frogs Australia Network (2005b). *Frog Spotting*. [Online]. Available from: http://www.frogsaustralia.net.au/conservation/frog-spotting.cfm. [Accessed: 10-12 -2008].

> _____January 2009 _____ GAGIN Pty Ltd- 50 School Rd. Balliang East greybox_grasslands@bigpond.com

Presence of the Growling Grass Frog *Litoria raniformis* 100 Vineyard Road, Sunbury

Hero, J-M., M. Littlejohn & G. Marantelli (1991). Frogwatch Field Guide to Victorian Frogs.

[Online]. Vic. Dept Cons. & Env., Melbourne. Available from:

http://frogs.org.au/frogs/index.html. [Accessed 10-12-2008].

Appendix 1

Daily Weather Observations for November and December 2008 Melbourne Airport, Victoria

Melbourne Airport, Victoria November 2008 Daily Weather Observations

Australian Government Bureau of Meteorology

	Temps Rain				Evap	Sun	Max wind gust					9a	ım			3pm						
Date	Day	Min	Max				Dirn	Spd	Time	Temp	RH	Cld	Dirn	Spd	MSLP	Temp	RH	Cld	Dirn	Spd	MSLP	
<u> </u>		*C	*C	mm	mm 4.4	hours		km/h	local no.ee	.0	%	eighths		km/h	hPa 4004 F	*C	%	eighths	CCE	km/h	hPa 4000 0	
1 2	Sa	10.2 10.1	19.7 29.0	1.2	4.4	3.4	S	37 57	00:55 08:21	12.5 19.5	67	7	S N	17 37	1024.5 1018.0	15.7 27.5	58	1	SSE	20	1023.0 1013.4	
3	Su Mo	13.4	17.8	8.0	4.4 6.6	8.6 0.2	N N	56	23:33	14.4	53 76	-	SW	31	1014.3	16.5	22 64	- 1	SSW	24 31	1015.4	
4	Tu	9.8	16.4	0.0	4.0	10.5	s	48	05:28	11.0	46	8 7	SSE	28	1021.5	14.9	45	4	S	19	1018.0	
5	We	5.2	26.4	0	5.4	5.3	wsw	52	21:19	10.7	67	7	NNE	9	1012.6	24.6	18	7		28	1007.7	
8	Th	10.5	24.5	ō	8.0	10.2	WSW	46	23:02	15.0	63	7	W	15	1010.3	22.9	25	3	w	24	1008.5	
7	Fr	10.0	20.8	ō	6.4	0.0	N	87	12:41	18.0	38	8	N	24	1007.8	15.7	82	8	N N	46	1002.7	
8	Sa	10.9	20.0	2.6	3.6	4.0	WSW	59	12:07	13.3	68	7	w	31	1005.6	17.0	41	7	wsw	33	1007.6	
9	Su	7.5	27.0	0	4.4	11.8	WSW	33	07:58	14.9	58	7	w	22	1018.9	23.9	33	2	NW	11	1016.9	
10	Mo	12.3	24.2	0	6.6	11.1	SSE	35	14:13	16.2	70	2	SSW	7	1023.0	23.2	40	7	SSE	20	1020.9	
11	Tu	9.6	32.3	0	6.0	12.6	N	41	12:10	16.4	71	1	N	7	1020.4	31.5	16	5	NNW	19	1015.0	
12	We	15.2	34.8	0	10.0	10.5	NNE	65	11:48	27.1	22	7	N	30	1015.1	33.2	12	6	NW	17	1012.6	
13	Th	16.8	34.4	0	14.2	2.1	w	78	18:32	25.5	29	8	N	48	1008.6	31.7	16	7	N	50	1006.3	
14	Fr	13.4	21.5	12.2	11.2	6.5	S	35	15:44	13.7	92	8	SSW	13	1012.1	19.7	53	6	S	20	1011.7	
15	Sa	9.2	21.7	0	4.4	11.5	WSW	57	15:10	13.4	62	7	SW	20	1016.5	21.3	24	2	SW	19	1014.8	
16	Su	8.7	16.8	0	8.4	8.4	SSE	50	11:18	11.4	47	7	SSW	28	1021.7	15.5	35	3	S	24	1021.3	
17	Mo	9.5	18.8	0	4.2	10.0	SE	37	10:18	12.5	52	7	S	20	1020.5	17.9	39	1	ESE	19	1016.9	
18	Tu	8.9	18.8	0	5.8	3.1	SSE	30	15:53	14.0	65	7	SE	7	1014.0	18.0	48	7		15	1011.8	
19	We	12.4	21.5	0	2.8	0.1	SSE	30	15:44	13.4	97	8	S	15	1011.5	19.9	60	8	SW	13	1007.0	
20	Th	13.3	17.9	8.0	2.4	6.0	WSW	52	09:46	13.9	82	8	WSW	31	1002.1	16.8	52	7	SW	31	1002.4	
21	Fr	7.1	20.9	0	4.4	7.1	SW	61	17:14	12.6	51	7	WSW	19	1002.1	18.0	30	5	NW	31	996.8	
22	Sa	6.5	13.8	3.2	6.4	6.1	S	72	14:57	10.2	64	7	WSW	41	996.7	9.2	84	_ ′	SSW	35	998.6	
23	Su	7.1	17.7	14.0	4.6	5.4	SSW	63	03:13	13.7	74	7	SSW	37	1003.6	17.0	49		S	33	1004.0	
24	Mo Tu	10.8 7.7	17.3 25.5	0	5.0	4.7	SW	37 39	10:34 17:59	11.5	69 73	8	SW	26	1009.7 1013.8	15.6 23.7	56 22		SE ENE	24 11	1009.7 1011.4	
25 26	We	9.3	29.7	0	4.4 7.4	13.3 11.4	S N	54	13:40	13.6 17.4	73 59	2	E	- 4	1010.7	27.3	32 26	6	ENE N	22	1008.5	
27	Th	17.2	30.7	ő	11.2	6.4	N	72	10:08	21.9	50	2 7	N	48	1004.9	30.0	33	6	N N	35	1000.5	
28	Fr	14.6	20.0	0	7.2	1.3	SSE	33	13:18	17.0	74	9	S	40	1004.9	18.1	60	8	SSE	19	1004.1	
29	Sa	12.3	18.5	4.8	3.4	3.7	SSE	44	13:39	13.5	77	8	SSW	26	1004.2	16.2	58	7	S	24	1004.1	
30	Su	6.8	24.9	0	3.6	9.7	NNW	59	14:25	13.7	56	5	WNW	13	1010.8	22.7	22	. 6	NNW	26	1005.4	
	cs for No			٠,	0.0	0.7			. 1.20	10.7	- 00	-		10	.516.6	22.7				20		
	Mean	10.5	22.8		6.0	6.8				15.1	62	6		22	1012.1	20.8	41	5		24	1010.0	
	Lowest	5.2	13.8		2.4	0.0				10.2	22	1	S	4	996.7	9.2	12	1	#	11	996.8	
	Highest	17.2	34.8	14.0	14.2	13.3	N	87		27.1	97	8	N	48	1024.5	33.2	84	8	N	50	1023.0	
	Total			46.8	180.8	205.0																

Observations were drawn from Melbourne Airport (station 086282)

IDC_DIV3049.200811 Prepared at 16:14 GMT on 2 Jan 2009 Copyright © 2009 Bureau of Meteorology Users of this product are deemed to have read the information and accepted the conditions described in the notes at http://www.bom.gov.au/olimate/down/IDC_UDW0000.pdf

Melbourne Airport, Victoria December 2008 Daily Weather Observations

		Ten	nns				Max	wind g	ıct			Q.	am			3pm						
Date	Day	Min	Max	Rain	Evap	Sun	Dirn	Spd	Time	Temp RH Cld Dirn Spd MSLP												
	,	•c	*C	mm	mm	hours		km/h	local	.c	96	eighths		km/h	hPa	*C	96	eighths	D	km/h	MSLP hPa	
1	Mo	8.9	21.1	2.0	7.2	10.1	WSW	56	23:18	13.7	56	- 5	WSW	24	1008.9	18.5		7	W	31	1007.6	
2	Tu	8.9	22.2	0	6.8	7.5	WNW	46	07:10	16.0	42	6	WNW	30	1009.5	20.7	28	7	W	17	1007.2	
3	We	13.4	21.3	0	5.6	6.7	SSW	48	12:19	14.8	62	7	WSW	22	1009.7	17.5	46	7	S	26	1011.7	
4	Th	7.4	25.6	0	5.8	5.8	N	39	15:22	14.4	55	7	E	9	1018.4	24.4	19	8	NNE	24	1012.4	
5	Fr	13.9	31.7	0	6.8	13.4	NW	67	12:38	24.0	43	3	NW	30	1006.4	29.9	23	1	NNW	31	1003.8	
6	Sa	12.9	27.2	0	12.6	9.1	NW	63	15:26	17.1	59	3	SW	11	1009.6	25.3	27	7	W	30	1004.7	
7	Su	7.8	19.0	0	7.0	11.2	SW	52	09:44	13.9	43	3	SW	26	1012.7	17.2	40	6	S	11	1012.3	
8	Mo	6.8	22.7	0	8.0	11.9	S	37	14:38	13.4	52	4	S	13	1014.9	21.3		2	S	24	1010.7	
9	Tu	7.7	19.2	0	5.6	0.0	S	41	12:11	13.4	77	8	WSW	13	1007.5	13.5		8	S	20	1007.9	
10	We	11.6	18.0	4.4	1.2	10.3	S	48	13:09	12.5	65	7	SSE	28	1013.3	16.8	39	1	S	30	1012.6	
11	Th	7.7	22.7	0	6.4	13.2	S	37	12:00	15.3	60	2	SSE	19	1015.1	21.4		1	S	24	1012.1	
12	Fr	12.0	22.4	0	8.0	0.3	N	59	09:20	20.6	51	8	N	24	1007.1	17.0		8	ENE	15	1003.5	
13	Sa	15.0	16.6	40.2	4.8	0.0	SW	76	16:24	16.2	97	8	NW	17	989.0	14.5		8	SSW	48	994.1	
14	Su	10.9	18.2	39.0	6.6	7.3	SSW	50	08:49	14.1	90	7	SSW	31	1005.0	15.7		7	SSW	35	1007.3	
15	Mo	11.2	20.4	0.4	5.8	5.7	S	35	17:31	11.9	59	8	WSW	24	1012.8	17.0		6	W	13	1012.0	
16	Tu	10.7	19.3	0	4.0	2.0	SSE	33	15:01	15.8	67	7	NW	6	1012.8	18.4		7	S	9	1011.9	
17	We	12.5	19.2	1.6	2.2	1.2	SSE	28	16:11	14.3	81	7			1012.9	18.6		7	N	4	1009.7	
18	Th	12.8	20.4	0	3.8	4.3	SW	41	12:11	15.0	79	7	w	9	1006.2	16.8		7	S	26	1005.2	
19	Fr	8.9	17.7	0.2	4.2	10.2	SSE	56	13:55	11.0	72	7	SSW	20	1014.2	15.2		5	SSE	35	1015.8	
20	Sa	7.6	21.4	0.2	4.6	13.1	SSE	41	12:24	14.2	62	2	SE	15	1021.4	19.8		5	SSE	22	1019.2	
21	Su	10.0	29.1	0	6.0	10.8	N	48	08:22	18.5	58	1	N	22	1018.4	27.7	27	3	NNE	26	1013.9	
22	Mo	18.3	34.5	0	14.8	7.5	N	85	09:52	22.5	39	7	N	48	1007.6	33.3	20	7	NNW	41	1003.3	
23	Tu	13.8	19.7	0.2	9.8	7.9	SSW	41	08:25	14.9	76	8	SSW	28	1013.6	18.5		5	S	24	1013.7	
24	We	10.2	23.2	0.2	5.4	13.8	SE	31	00:17	15.6	54	4	SE	19	1013.6	21.9		1	SSW	13	1011.7	
25	Th	11.1	23.8	0	6.4	13.5	SE	37	12:43	16.6	61	3	SSW	9	1015.1	22.3			SSE	22	1013.1	
26	Fr	11.4	29.7	0	7.8	9.9	s	67	11:57	23.8	42	/	N	22	1009.6	24.2	43		SE	17	1008.5	
27	Sa	13.8	29.2	0	6.4	9.4	S	39	15:32	24.2	46	6	NNW	20	1006.0	21.1	73		S	20	1003.5	
28	Su	11.2	28.5	1.4	6.0	10.5	SSE	48	17:42	20.1	58	5	NNE	9	1003.9	27.9			SE	22	1001.7	
29	Mo	11.8	22.3	0	8.6	9.8	SW	54	16:19	15.7	54	0	SW	20	1008.0	19.6			SW	30	1007.9	
30	Tu	13.3	23.5	0.2	6.2	8.0	WSW	59	14:18	14.5	86		w	24	1003.6	21.5		/	WSW	35	1002.3	
31	We cs for De	12.0	23.3	0	9.4	8.4	WSW	48	03:38	16.0	47	/	w	22	1006.1	20.5	34	6	W	17	1004.8	
ataustic	Mean	11.1	23.0		6.6	8.21				16.3	81	5		20	1010.1	20.6	46	5		23	1008.6	
	Lowest	6.8	16.6		1.2	0.0				11.0	39	1	NW	8	989.0	13.5			N	4	994.1	
	Highest	18.3	34.5	40.2	14.8	13.8	N	85		24.2	97	8	N	48	1021.4	33.3	94	8	SSW	48	1019.2	
	Total			90.0	203.8	252.8						_		-								
Observation	ns were dra	un from M	albourne A	Import Astati											ID.	C IDM2049	200042 0	Prepared at	13:15 GMT	on 7, len 3	222	

Observations were drawn from Melbourne Airport (station 086282)

IDCJDW3049.200812 Prepared at 13:15 GMT on 7 Jan 2009 Copyright © 2009 Bureau of Meteorology

Users of this product are deemed to have read the information and accepted the conditions described in the notes at http://www.bom.gov.au/climate/dwo/IDCJDW0000.pdf